The MicroLabBox II is a compact development and test system for rapid control prototyping and hardware-in-the-loop applications.

Easy transition

From offline simulation in Simulink® to execution on the MicroLabBox II. 

Ready-to-use I/O functions

Comprehensive set of I/O libraries provided by dSPACE.

Communication interfaces

Bus & network interfaces incl. 10 GBit/s Ethernet, CAN FD, LIN, EtherCAT.

Powerful CPU & large FPGA

Geared up for what is ahead of you: Fast control loops, complex models and much more.

What is MicroLabBox II?

As the evolution of the well established MicroLabBox I, the MicroLabBox II is a compact laboratory system for rapid control prototyping and hardware-in-the-loop (HIL) applications that combines compact size and cost-effectiveness with high performance and versatility.

Its high-performance quad core processor can easily run demanding Simulink® models, e.g., for the simulation of electric motors. Its extensive set of I/O interfaces every single reqquirement of control or test engineers who want to prototype their algorithms.

Furthermore, the MicroLabBox II provides a user-programmable FPGA for even faster control loops or the most demanding and accurate simulation models. 

Thanks to the dSPACE experiment software, ControlDesk, model signals can be accessed for visualization and measurement purposes without additional effort. Model parameters can be calibrated during run time without recompiling the application.

Application Areas

The MicroLabBox II lets you set up your control, test, or measurement applications quickly and easily, and helps you turn your individual concepts into reality. More than 100 I/O channels of different types make the MicroLabBox II a versatile system that can not only be used in mechatronics research and development areas, but also for all kinds of testing purposes such as:

  • Electric drives development
  • Power electronics development
  • Renewable energy
  • Aerospace
  • Robotics
  • Medical engineering

Let's discuss your use case!

 Be Inspired by the Capabilities of MicroLabBox II

Key Benefits & Features of MicroLabBox II

Wide Variety of I/O Functions


As the latest generation of the well established MicroLabBox series, the MicroLabBox II comes with a wide variety of I/O functions that make it easy to connect existing models to hardware channels.
Included I/O functions:

  • Voltage in/ voltage out 
  • PWM inputs/ PWM outputs
  • Voltage signal capture, digital pulse capture
  • Waveform out, digital pulse out
  • UART, I²C, SPI
  • CAN FD, LIN
  • Ethernet
  • XCP on Ethernet/ CAN

... and many more. 

For E-Mobility applications, dSPACE offers a comprehensive set of ready-to-use functions for processor-based e-motor control applications including field-oriented control with support for sine-, hall-, incremental encoders or resolvers. 

Libraries for FPGA based e-motor control applications that allow to reach even faster turn-around times are also available.

For hardware-in-the-loop applications, dSPACE also provides libraries for processor-based and FPGA-based e-motor and power electronics simulation. 

 

   

More information about E-mobility applications

User-Programmable AMD® Kintex® UltraScale+ FPGA

Using the dSPACE-provided I/O functions for fast prototyping implementations, you can execute your own model on the MicroLabBox processor. Or you can create your own FPGA-application, either model-based or written in VHDL. You can also combine both approaches or deselect certain functionalities to free up space. dSPACE also provides a variety of libraries for model-based FPGA development to benefit from the speed of an FPGA without having to deal with the difficulties of FPGA design. 

Bus & Network Interfaces


The MicroLabBox II provides up to 4 CAN FD channels with signal improvement capability (SIC) as well as up to 4 LIN channels. The two standard Ethernet ports support data rates of up to 10 GBit/s and can also be used for automotive Ethernet when using a media converter. In addition, fieldbuses like EtherCAT and Modbus are supported, making the MicroLabBox II a perfect fit for automation industry. 

Well-Established dSPACE Tool Chain

The corresponding software ConfigurationDesk is used to easily connect an existing Simulink® model to the hardware interfaces of the MicroLabBox II. As soon as the interfaces are specified and configured, the execution of your model is just one click away.
ConfigurationDesk not only lets you use Simulink® models, but it also supports container formats like SIC and FMU. 
Once the application is running, ControlDesk can be used to visualize, measure, and even adjust model variables during run time. The MicroLabBox II USB port can also be used for data logging.

Technical details & variants

Front Panel - Simply Stack

The front-panel variant is especially well suited if the MicroLabBox II is installed in a cabinet, as connectors are accessible from the front.

Due to the arrangement of the connectors on the front side, it is possible to stack several MicroLabBoxes on top of each other.

In addition, transfer modules can be connected with little effort in order to quickly and easily plug in individual cables using spring cage terminals without having to assemble connectors beforehand.

Top Panel - Customized Signals

The top panel variant uses BNC connectors for high signal integrity and allows easy connection and disconnection of individual signals.

For both versions, the pin assignment of the individual connectors is printed on the housing for quick location.
Apart from the different arrangement of the connectors, the two versions are technically identical.

 

Technical details

 

Parameters Front Panel Top Panel
Dimensions •    Depth 325 mm (12.5 in)
•    Width 255 mm (10.0 in)
•    Height 110 mm (4.4 in)
•    Depth 325 mm (12.5 in)
•    Width 255 mm (10.0 in)
•    Height 120 mm (4.7 in)
Weight •    6.1 kg (13.5 lb) •    6.3 kg (13.9 lb)
Connectors •    4x Sub-D 50 analog/digital I/O connectors
•    4x Sub-D bus 9 I/O connectors
•    3x RJ 45 ethernet connectors
•    2x 2 banana plug connectors for sensor supply
•    1x USB-A
•    1x SFP (IOCNet, optical)
•    1x QSFP (MGT, optical)
 
•    48x BNC analog I/O connectors, 
•    2x Sub-D 50 digital I/O connectors, 
•    4x Sub-D 9 bus I/O connectors
•    3x RJ 45 ethernet connectors
•    2x 2 banana plug connectors for sensor supply
•    1x USB-A
•    1x SFP (IOCNet, optical)
•    1x QSFP (MGT, optical)
Processor •    Real-time processor Intel Core i3 9th generation, 8 GB DDR4 RAM
•    Host communication processor ARM® Cortex®-A9, 2x 1.2 GHz, 512MB DDR4 RAM
FPGA •    AMD® Kintex® UltraScale+ XCKU15P
Communication interfaces •    Host interface: Integrated 1 Gb ethernet host interface
•    Ethernet real-time I/O interface: 2x low-latency 10 Gb ethernet interfaces
•    USB: USB 2.0 interface for data logging and as storage for real-time applications
•    CAN: 4x CAN FD channels with signal improvement capability (SIC)
•    LIN: 4x LIN channels
•    Serial interface: 2x UART interfaces supporting RS232, RS422, or RS485
•    dSPACE IOCNet: 1x IOCNet interface
•    High-speed serial: 1x Multi-Gigabit-Transceiver interface (MGT), connected to the FPGA’s GTY-Transceivers
Analog input •    24x 16 bit channels, 2 MS/s,  -10…+10V, differential
•    6x 16 bit channels, 5 MS/s, -10…+10V, differential
•    2x 16 bit channels, 5 MS/s, -10…+10V, differential, with load resistor
Analog output •    14x 16 bit channels, 2.5 MS/s, ground-based, -10V…+10V
•    2x 16 bit channels, 5MS/s, ground-based, -10V…+10V
Digital I/O

•    48x bidirectional channels:

- Input characteristics: Voltage range -35V…+35V, configurable threshold, up to 20 MHz input frequency, 25ns minimum pulse width

- Output characteristics: Output high voltage 3.3/5V, up to 20 MHz output frequency, 25ns minimum pulse width, output current limit 40mA 

•    12x bidirectional differential channels with switchable termination:

- Input characteristics: Voltage range -5V…+5V, up to 20 MHz input frequency, 25ns minimum pulse width

- Output characteristics: Voltage range 1.5V…3.3V, up to 20MHz output frequency, 25ns minimum pulse width

Sensor supply •    1x 5V, output current 500mA
•    1x 12V, output current 500mA
User feedback •    3x Programmable RGB LEDs
Power supply & cooling •    100…240VAC, max. 280W
•    Active cooling, temperature controlled

 

Required product

  • ConfigurationDesk

    dSPACE 실시간 하드웨어를 위한 구성 및 구현 소프트웨어

Optional products

  • ControlDesk

    ECU 개발을 위한 범용 실험 소프트웨어

  • AutomationDesk

    ECU의 HIL 테스트를 위한 강력한 테스트 작성 및 자동화 도구

  • 자동차 시뮬레이션 모델

    엔진, 차량 역학, 전기 시스템 및 교통 환경을 시뮬레이션하기 위한 도구 모음

  • ECU Interface Base Package

    The ECU Interface Manager is an easy-to-use tool for quickly integrating bypass services and hooks directly into the ECU software.

  • FPGA 프로그래밍 블록세트

    Xilinx® Vitis™ Model Composer HDL Library를 사용하여 dSPACE 시스템으로 생성된 FPGA 모델을 사용하기 위한 Simulink® 블록세트.

  • Bus Manager

    Configuration tool for LIN, CAN, and CAN FD bus simulation

  • Bus Navigator

    버스 구성을 표시하고 실험하기 위한 명확한 그래픽 사용자 인터페이스

  • Ethernet 구성 패키지

    Ethernet SOME/IP 네트워크용 구성 도구

E-Mobility applications

Hardware Interfaces


The MicroLabBox II provides hardware interfaces for Hall-, Incremental-, Sinus Encoder, Resolver, SSI and EnDat that can be expanded with the Xilinx Aurora optical interface.

Furthermore, the MicroLabBox II has an integrated sensor supply with 5 V and 12 V banana plug outputs. Therefore, there is no extra power supply necessary which leaves more room on the developer's desk. 

 

 

Leveraging the benefits of FPGA technology 

For the high switching frequencies of state-of-the-art inverter controllers, processor based approaches are often not fast enough. Therefore, dSPACE offers FPGA libraries to enable you to easily built FPGA-based controllers without requiring expert knowledge. The same principal applies to simulation models, where FPGA technology allows for highest dynamics and precision. 

  • XSG AC 모터 제어 라이브러리

    MicroAutoBox II, MicroLabBox 및 SCALEXIO용 FPGA 기반 제어 설계

  • XSG Electric Component Library

    Plant models of electric drives featuring FPGA-based simulations

Hardware-in-the-Loop (HIL) Applications

Like all dSPACE real-time systems/ platforms, the MicroLabBox II can be used for a variety of HIL applications. Due to its compact form factor, it is an optimal choice for a bench top simulator, that still provides enough processing power and I/O for large models. 

  • SCALEXIO EMH Solution

    Processor based simulation of electric drives

  • Electrical Power Systems Simulation Package

    Simscape Electrical™(특수 전력 시스템)로 개발한 전력 전자 회로용 실시간 간편 시뮬레이션

That sounds interesting? Get in touch:

More Information

  

혁신을 추진하세요. 항상 기술 개발의 동향을 주시해야 합니다.

저희 전문 지식 서비스에 가입하세요. dSPACE의 성공적인 프로젝트 사례를 확인해 보세요. 시뮬레이션 및 검증에 대한 최신 정보를 받아보세요. 지금 바로 dSPACE 다이렉트(뉴스레터)를 구독하세요.

Enable form call

At this point, an input form from Click Dimensions is integrated. This enables us to process your newsletter subscription. The form is currently hidden due to your privacy settings for our website.

External input form

By activating the input form, you consent to personal data being transmitted to Click Dimensions within the EU, in the USA, Canada or Australia. More on this in our privacy policy.