The MicroLabBox II is a compact development and test system for rapid control prototyping and hardware-in-the-loop applications.

Easy transition

From offline simulation in Simulink® to execution on the MicroLabBox II. 

Ready-to-use I/O functions

Comprehensive set of I/O libraries provided by dSPACE.

Communication interfaces

Bus & network interfaces incl. 10 GBit/s Ethernet, CAN FD, LIN, EtherCAT.

Powerful CPU & large FPGA

Geared up for what is ahead of you: Fast control loops, complex models and much more.

What is MicroLabBox II?

As the evolution of the well established MicroLabBox I, the MicroLabBox II is a compact laboratory system for rapid control prototyping and hardware-in-the-loop (HIL) applications that combines compact size and cost-effectiveness with high performance and versatility.

Its high-performance quad core processor can easily run demanding Simulink® models, e.g., for the simulation of electric motors. Its extensive set of I/O interfaces every single reqquirement of control or test engineers who want to prototype their algorithms.

Furthermore, the MicroLabBox II provides a user-programmable FPGA for even faster control loops or the most demanding and accurate simulation models. 

Thanks to the dSPACE experiment software, ControlDesk, model signals can be accessed for visualization and measurement purposes without additional effort. Model parameters can be calibrated during run time without recompiling the application.

Application Areas

The MicroLabBox II lets you set up your control, test, or measurement applications quickly and easily, and helps you turn your individual concepts into reality. More than 100 I/O channels of different types make the MicroLabBox II a versatile system that can not only be used in mechatronics research and development areas, but also for all kinds of testing purposes such as:

  • Electric drives development
  • Power electronics development
  • Renewable energy
  • Aerospace
  • Robotics
  • Medical engineering

Let's discuss your use case!

 Be Inspired by the Capabilities of MicroLabBox II

Key Benefits & Features of MicroLabBox II

Wide Variety of I/O Functions


As the latest generation of the well established MicroLabBox series, the MicroLabBox II comes with a wide variety of I/O functions that make it easy to connect existing models to hardware channels.
Included I/O functions:

  • Voltage in/ voltage out 
  • PWM inputs/ PWM outputs
  • Voltage signal capture, digital pulse capture
  • Waveform out, digital pulse out
  • UART, I²C, SPI
  • CAN FD, LIN
  • Ethernet
  • XCP on Ethernet/ CAN

... and many more. 

For E-Mobility applications, dSPACE offers a comprehensive set of ready-to-use functions for processor-based e-motor control applications including field-oriented control with support for sine-, hall-, incremental encoders or resolvers. 

Libraries for FPGA based e-motor control applications that allow to reach even faster turn-around times are also available.

For hardware-in-the-loop applications, dSPACE also provides libraries for processor-based and FPGA-based e-motor and power electronics simulation. 

 

   

More information about E-mobility applications

User-Programmable AMD® Kintex® UltraScale+ FPGA

Using the dSPACE-provided I/O functions for fast prototyping implementations, you can execute your own model on the MicroLabBox processor. Or you can create your own FPGA-application, either model-based or written in VHDL. You can also combine both approaches or deselect certain functionalities to free up space. dSPACE also provides a variety of libraries for model-based FPGA development to benefit from the speed of an FPGA without having to deal with the difficulties of FPGA design. 

Bus & Network Interfaces


The MicroLabBox II provides up to 4 CAN FD channels with signal improvement capability (SIC) as well as up to 4 LIN channels. The two standard Ethernet ports support data rates of up to 10 GBit/s and can also be used for automotive Ethernet when using a media converter. In addition, fieldbuses like EtherCAT and Modbus are supported, making the MicroLabBox II a perfect fit for automation industry. 

Well-Established dSPACE Tool Chain

The corresponding software ConfigurationDesk is used to easily connect an existing Simulink® model to the hardware interfaces of the MicroLabBox II. As soon as the interfaces are specified and configured, the execution of your model is just one click away.
ConfigurationDesk not only lets you use Simulink® models, but it also supports container formats like SIC and FMU. 
Once the application is running, ControlDesk can be used to visualize, measure, and even adjust model variables during run time. The MicroLabBox II USB port can also be used for data logging.

Technical details & variants

Front Panel - Simply Stack

The front-panel variant is especially well suited if the MicroLabBox II is installed in a cabinet, as connectors are accessible from the front.

Due to the arrangement of the connectors on the front side, it is possible to stack several MicroLabBoxes on top of each other.

In addition, transfer modules can be connected with little effort in order to quickly and easily plug in individual cables using spring cage terminals without having to assemble connectors beforehand.

Top Panel - Customized Signals

The top panel variant uses BNC connectors for high signal integrity and allows easy connection and disconnection of individual signals.

For both versions, the pin assignment of the individual connectors is printed on the housing for quick location.
Apart from the different arrangement of the connectors, the two versions are technically identical.

 

Technical details

 

Parameters Front Panel Top Panel
Dimensions •    Depth 325 mm (12.5 in)
•    Width 255 mm (10.0 in)
•    Height 110 mm (4.4 in)
•    Depth 325 mm (12.5 in)
•    Width 255 mm (10.0 in)
•    Height 120 mm (4.7 in)
Weight •    6.1 kg (13.5 lb) •    6.3 kg (13.9 lb)
Connectors •    4x Sub-D 50 analog/digital I/O connectors
•    4x Sub-D bus 9 I/O connectors
•    3x RJ 45 ethernet connectors
•    2x 2 banana plug connectors for sensor supply
•    1x USB-A
•    1x SFP (IOCNet, optical)
•    1x QSFP (MGT, optical)
 
•    48x BNC analog I/O connectors, 
•    2x Sub-D 50 digital I/O connectors, 
•    4x Sub-D 9 bus I/O connectors
•    3x RJ 45 ethernet connectors
•    2x 2 banana plug connectors for sensor supply
•    1x USB-A
•    1x SFP (IOCNet, optical)
•    1x QSFP (MGT, optical)
Processor •    Real-time processor Intel Core i3 9th generation, 8 GB DDR4 RAM
•    Host communication processor ARM® Cortex®-A9, 2x 1.2 GHz, 512MB DDR4 RAM
FPGA •    AMD® Kintex® UltraScale+ XCKU15P
Communication interfaces •    Host interface: Integrated 1 Gb ethernet host interface
•    Ethernet real-time I/O interface: 2x low-latency 10 Gb ethernet interfaces
•    USB: USB 2.0 interface for data logging and as storage for real-time applications
•    CAN: 4x CAN FD channels with signal improvement capability (SIC)
•    LIN: 4x LIN channels
•    Serial interface: 2x UART interfaces supporting RS232, RS422, or RS485
•    dSPACE IOCNet: 1x IOCNet interface
•    High-speed serial: 1x Multi-Gigabit-Transceiver interface (MGT), connected to the FPGA’s GTY-Transceivers
Analog input •    24x 16 bit channels, 2 MS/s,  -10…+10V, differential
•    6x 16 bit channels, 5 MS/s, -10…+10V, differential
•    2x 16 bit channels, 5 MS/s, -10…+10V, differential, with load resistor
Analog output •    14x 16 bit channels, 2.5 MS/s, ground-based, -10V…+10V
•    2x 16 bit channels, 5MS/s, ground-based, -10V…+10V
Digital I/O

•    48x bidirectional channels:

- Input characteristics: Voltage range -35V…+35V, configurable threshold, up to 20 MHz input frequency, 25ns minimum pulse width

- Output characteristics: Output high voltage 3.3/5V, up to 20 MHz output frequency, 25ns minimum pulse width, output current limit 40mA 

•    12x bidirectional differential channels with switchable termination:

- Input characteristics: Voltage range -5V…+5V, up to 20 MHz input frequency, 25ns minimum pulse width

- Output characteristics: Voltage range 1.5V…3.3V, up to 20MHz output frequency, 25ns minimum pulse width

Sensor supply •    1x 5V, output current 500mA
•    1x 12V, output current 500mA
User feedback •    3x Programmable RGB LEDs
Power supply & cooling •    100…240VAC, max. 280W
•    Active cooling, temperature controlled

 

Required product

  • ConfigurationDesk

    Logiciel de configuration et d’implémentation pour le matériel temps réel dSPACE

Optional products

  • ControlDesk

    Logiciel d’expérimentation universel pour le développement de calculateur

  • AutomationDesk

    Puissant outil de création et d’automatisation des tests pour les tests HIL des calculateurs

  • Automotive Simulation Models

    Suite d’outils pour la simulation du moteur, de la dynamique du véhicule, du système électrique et de l’environnement de trafic

  • ECU Interface Base Package

    L’ECU Interface Manager est un outil simple à utiliser permettant l’intégration rapide des services et des bypass hooks directement dans le logiciel du calculateur.

  • FPGA Programming Blockset

    Blockset Simulink® permettant d’utiliser un modèle FPGA créé avec un système dSPACE à l’aide de la bibliothèque HDL Vitis™ Model Composer de Xilinx®.

  • Bus Manager

    Outil de configuration pour la simulation de bus LIN, CAN et CAN FD

  • Bus Navigator

    Interface utilisateur graphique claire pour afficher et expérimenter les configurations de bus

  • Ethernet Configuration Package

    Outil de configuration des réseaux Ethernet SOME/IP

E-Mobility applications

Hardware Interfaces


The MicroLabBox II provides hardware interfaces for Hall-, Incremental-, Sinus Encoder, Resolver, SSI and EnDat that can be expanded with the Xilinx Aurora optical interface.

Furthermore, the MicroLabBox II has an integrated sensor supply with 5 V and 12 V banana plug outputs. Therefore, there is no extra power supply necessary which leaves more room on the developer's desk. 

 

 

Leveraging the benefits of FPGA technology 

For the high switching frequencies of state-of-the-art inverter controllers, processor based approaches are often not fast enough. Therefore, dSPACE offers FPGA libraries to enable you to easily built FPGA-based controllers without requiring expert knowledge. The same principal applies to simulation models, where FPGA technology allows for highest dynamics and precision. 

  • XSG AC Motor Control Library

    Conception de contrôleurs basée sur FPGA pour la MicroAutoBox II, la MicroLabBox et SCALEXIO

  • XSG Electric Component Library

    Modèles d’environnement pour les simulations basées sur FPGA

Hardware-in-the-Loop (HIL) Applications

Like all dSPACE real-time systems/ platforms, the MicroLabBox II can be used for a variety of HIL applications. Due to its compact form factor, it is an optimal choice for a bench top simulator, that still provides enough processing power and I/O for large models. 

  • SCALEXIO EMH Solution

    Simulation de moteurs électriques sur plate-forme processeur

  • Electrical Power Systems Simulation Package

    Simulation temps réel simple de circuits électroniques de puissance développés avec Simscape Electrical™ (Specialized Power Systems)

That sounds interesting? Get in touch:

More Information

  

Faire avancer l'innovation. Toujours à la pointe de l'évolution technologique.

S’abonner à nos newsletters, gérer ses abonnements ou se désabonner. La newsletter mensuelle contenant toutes les informations liées à l’aéronautique et défense.

Enable form call

At this point, an input form from Click Dimensions is integrated. This enables us to process your newsletter subscription. The form is currently hidden due to your privacy settings for our website.

External input form

By activating the input form, you consent to personal data being transmitted to Click Dimensions within the EU, in the USA, Canada or Australia. More on this in our privacy policy.