制御システムが判断を独自に下す車両の妥当性を確認する方法は、開発者が直面した新たな課題でした。ZF社では、従来のHILテクノロジとセンサによる現実に即した環境シミュレーションを組み合わせることにより、この課題に対応しました。この目的のため、dSPACEツールチェーンをベースとしたテストシステムが設計されました。

ドライバーが運転する従来型の車両に対し、高レベルの品質と快適性を実装して製品化する場合でも、コストや期間に関する目標を常に満たさなければならないことを考慮した場合、開発や妥当性確認の段階での労力は相当なものとなります。それが自動輸送システムの実用化となれば、このような品質、効率性、および安全性の要件はまったく新しいレベルへと引き上げられます。このようなシステムは、自動運転機能の実装だけでなく、最終的にはあらゆる天候や交通状況、視界条件で安全に運行できなければならず、極めて無駄のない手法とツールチェーン無しでは開発段階で生じる複雑さを克服することが不可能なためです。

自動運転テクノロジ向けのプラットフォーム

ZF社では、バッテリ駆動型の新交通システムに対応したテクノロジプラットフォームの開発に取り組んでいます。このプロジェクトには、自動運転のシステム設計を専門とするZF社の技術が幅広く投入されており、同社のテクノロジグループでは、特に周辺環境やセンサからのデータを特定して処理するための最先端の専門技術を採り入れています。また、このプロジェクトでは、ZF社とNVIDIA社がほんの1年前に導入したZF ProAIスーパーコンピュータ(車両の中央制御ユニットとして機能)の性能と実用性の検証も行われています。同社では、スケーラビリティに優れ、さまざまな車両に移植できるシステムアーキテクチャを構築し、使用目的や利用可能なハードウェア機器、求められる自動化レベルに応じた開発を行えるソリューションの実現を目指しています。

自動化システムの設計

車両には、環境を検出するための6個のLiDARセンサ、7個のレーダーセンサ、および12個のカメラセンサが搭載されており、全地球的航法衛星システム(GNSS)により正確な位置を特定できるようになっています。センサデータはすべてZF ProAI中央制御ユニットに送られて統合されます。制御ユニットでは、認知、オブジェクト識別、およびデータ融合という典型的な手順を踏みながら、データの前処理および評価を行い、駆動方式を計算します。その後、これらに基づいて、アクチュエータ(ステアリング、駆動系、およびブレーキシステム)の制御信号を生成します。ここでは、データ解析の処理速度やオブジェクトの認識精度を向上させるため、AIソフトウェアが活用されており、センサデータは部分的に人工知能(AI)を使用したアルゴリズムによって解析されます。AIソフトウェアを使用すると、豊富なデータを活用することができるため、歩行者による道路の横断といった繰り返し起きる交通状況のパターンを特定することも可能になります。

妥当性確認コンセプト

電子制御ユニット(ECU)の妥当性確認において、統合テストは重要なステップの1つです。これには、ECUと車両のすべてのセンサ、アクチュエータ、および電気/電子機器(E/E)アーキテクチャを組み合わせて行うテストも含まれます。このような総合的な検証は、センサやアクチュエータなどの関連するコンポーネントを含むすべての運転機能の妥当性を十分に確認し、車両の挙動を評価するうえでも重要です。そのため、同社の開発プロジェクトでは、妥当性確認ステップとして、統合テストにおいて実績のある手法であるHIL(Hardware-in-the-Loop)シミュレーションを採用しています。

人工知能

人工知能

人工知能(AI)はコンピュータサイエンスの一分野であり、知的行動と機械学習の自動化を研究対象としています。一般に、人工知能とは、コンピュータをプログラミングしてある程度独自に問題に対処できるようにすることにより、人間が意思決定を行う際の特定の行動を再現しようとするものです。

HILシミュレータのコンセプト

ZF社では、HILシミュレータの開発をdSPACEと協力して行いました。開発したシミュレータはSCALEXIOテクノロジをベースとしており、ステアリング、ブレーキ、Electric Drive、ビークルダイナミクス、およびすべてのセンサを含めた車両全体のシミュレーションを行うことができます。ここでは、すべてのセンサ信号がECUの入力として送信され、出力側では、車両のアクチュエータのHILオペレーションに必要な入出力が提供されると共に、レストバスシミュレーションも行われます。また、dSPACE Automotive Simulation Model(ASM)ツールスイートにより、センサと車両に対するビークルダイナミクスの計算をリアルタイムに行うことで、シミュレーション精度を向上させています。ただし、使用するAIシステム自体には「物理的な」リアルタイム特性や線形の依存関係がないため、これは特に難しい作業となります。そのため、センサおよびアクチュエータ向けの複数のシミュレータを同期化し、それらの間にAI制御ユニットを「挿入」することで、実際の車載条件下と同様の動作が実現するような工夫を施しています。

Exemplary illustration of the sensor architecture of the autonomous vehicle.

センサエミュレーション

ZF ProAI制御ユニットは、センサの生データをすべて直接処理するように設計されています。また、センサデータはオブジェクトリストとしても読み込まれます。オブジェクトリストは、ASM Traffic Modelによって提供され、周辺トラフィックのグラウンドトゥルースシミュレーションの一部として処理されます。生データを扱うためには、すべてのセンサを可能な限り現実に即してエミュレートする必要があります。

極めて高精度なセンサ環境シミュレーション
センサシミュレーションプラットフォーム:センサデータはセンサシミュレーションPCでシミュレートされます。環境センサインターフェースユニット(ESIユニット)を使用して、実際のセンサと同様の方法で電気信号を提供します。

極めて高精度なセンサ環境シミュレーション

センサの生データの生成には、定義されたテストシナリオに基づいてセンサ環境を計算し、極めて高い精度でシミュレートできるモデルが必要となります。そのため、同社ではdSPACEツールチェーンの物理レーダーモデル、LiDARモデル、およびカメラモデルを使用しています。これらの高精度かつ高分解能モデルにより、センサフロントエンドを含むセンサと周辺環境の間の伝送路を計算できるようになります。送信機から受信機までの全伝送路は、レーダーモデルやLiDARモデルの光線トレーサによって導かれます。また、多重伝播もサポートされています。ここでは、何百万もの光線が同時に放射されますが、その正確な数はそれぞれの3Dシーンによって異なります。いずれのモデルでも、物理的な挙動に基づいて複雑なオブジェクトの反射と拡散を計算します。多重伝播では「ホップ」数を指定することも可能です。また、LiDARモデルはフラッシュセンサと走査センサのいずれにも対応するよう設計されており、カメラモデルは色収差やレンズの汚れなど、さまざまなタイプのレンズや光学効果に対応しています。さらに、リアルタイム要件を満たすためには、グラフィックスプロセッシングユニット(GPU)で極めて複雑な個々のモデルのモデル要素を計算する必要があります。同社では、NVIDIA P6000搭載のSensor Simulation PCをdSPACEリアルタイムシステムにシームレスに統合して使用しています。

Sensors detect and identify objects in an urban traffic environment.

テストシナリオの生成
パラメータ設定やシナリオ生成には、Scenario Editor(左)を含むModelDeskを搭載した強力なワークステーションが使用されています。また、シミュレートされたテストドライブのビジュアル表示にはMotionDesk(右)が使用されています。

テストシナリオの生成

自動運転車両のテストで最も重要なことは、適切なシナリオを生成し、信頼性の高い手法で自動運転機能のテストや妥当性確認を行うことですが、Scenario Editorを使用すると、それが可能になります。Scenario Editorでは、複雑な周辺トラフィックを扱いやすいグラフィカルな手法で再現し、自車(センサを含むテスト対象車両)の運転操作、周辺トラフィックの操作、およびインフラストラクチャ(道路、道路標識、道路沿いの構造物など)を含むシナリオを作成することができます。これにより、車載センサからのデータに基づいて、現実的な3Dの仮想世界が生成されます。また、各種の設定は柔軟に変更できるため、Euro NCAPの標準仕様を厳密に実装したり、都市部を地域ごとに個別に構造化した複雑なシナリオを作成したりしながら、幅広いテストを行うことが可能です。このような3D環境には車両の3Dオブジェクトやセンサ環境モデルが含まれており、ASMによりリアルタイムにシミュレートされています。道路利用者の軌道のシミュレーションは、ASM Traffic Modelで行います。

センサシミュレーション向けのコンポーネント

センサシミュレーション向けのコンポーネント

リアルタイムのセンサ環境シミュレーションは、次のコンポーネントにより実装されています。

ZF ProAI
画像提供:© ZF社

ZF ProAI

ZF ProAI制御ユニットは、自動運転機能に対応する高い演算処理能力と人工知能(AI)を提供します。このユニットでは、極めて強力かつスケーラブルなNVIDIAプラットフォームにより、カメラ、LiDAR、レーダー、および超音波センサからの信号を処理します。車両の周辺環境をリアルタイムに把握し、ディープラーニングによって経験を収集します。

利用効果

  • AI対応
  • モデルに応じて最大150 TeraOPSの処理能力(= 1秒間に150兆回の演算を処理)を実装
  • 自動運転向けの各種機能に対応
  • 高度にスケーラブルなインターフェースおよび機能を搭載

自動運転車両の妥当性確認

ZF社のHILシミュレータネットワークを使用すると、開発者が今後の開発ステップの基盤となる条件を設定したうえで、車両の挙動全体を仮想テクノロジプラットフォーム上に再現して解析することができます。つまり、このシミュレータを使用すれば、初期の開発車両が自動的に適切な走路を検出できるかを確認するテストシナリオを実行したり、雨天時、降雪時、または薄氷上で予測不可能なイベントが発生した場合でも車両が安全に走行できる能力を持っているかをテストすることができます。また、E/Eシステムに断線、短絡、またはバスシステムエラーといった故障を挿入するなど、その他の一般的なHILテスト手法も追加できます。このように、テストカタログを継続的に拡大して包括的なソリューションとすることで、セーフティクリティカルな自動運転システムの機能面における妥当性確認を効率的に行えるようになります。

The HIL simulator synchronously generates the surrounding environment of the radar, lidar, and camera sensors, including their front end, in real time and subsequently provides it to the ZF ProAI control unit. ZF ProAI controls the simulated actuators according to the driving strategy.

ディープラーニング

ディープラーニング

ZF社のエンジニアは、シミュレータを通じて車両にさまざまな運転機能を与えて「トレーニング」します。トレーニングでは、横断歩道での歩行者や歩行者グループとの相互作用、衝突の評価、信号機やロータリーでの挙動など、特に都市の交通状況に重点が置かれています。高速道路や地方道での運転とは異なり、都市部では、コンピュータ制御の車両がその時点の交通状況に基づいてどのような動作を取るべきかを完全に理解することは非常に困難です。

主な利点

タスク

  • 自動運転向けバッテリの電気テクノロジプラットフォームを検証
  • AIベースの車両ガイダンス機能をテスト

技術的課題

  • すべてのセンサをリアルタイムでエミュレート
  • センサをセンサ環境(3D環境)で現実に即してリアルタイムにシミュレートできるセットアップを実現
  • 現実的なトラフィックを通じて車両挙動全体をシミュレート

ソリューション

  • レーダー、LiDAR、およびカメラの各センサを高精度でシミュレートできるリアルタイムプラットフォームを構築
  • トラフィック、ビークルダイナミクス、およびElectric Driveをリアルタイムにシミュレート
  • シナリオごとに調整を行いつつ仮想3D環境でテスト

著者について:

Oliver Maschmann

Oliver Maschmann

Oliver Maschmann is project manager at ZF in Friedrichshafen and responsible for the setup and operation of the HIL test benches for full vehicle integration testing.

dSPACE MAGAZINE、2019年7月発行

関連項目

  • ZF社: Autonomous Driving is Manageable
    ZF社: Autonomous Driving is Manageable

    ZF Friedrichshafen社のDirk Walliser博士が、dSPACE Magazineとのインタビューで、同社にとっての自動運転の重要性を説明し、市場投入に向けた次のステップについて語ります。

製品情報

  • センサシミュレーションPC
    センサシミュレーションPC

    現実的なセンサシミュレーション向けの高性能シミュレーションプラットフォーム

  • SCALEXIO
    SCALEXIO

    RCPおよびHILアプリケーション用のモジュール型のリアルタイムシステム

  • Automotive Simulation Models
    Automotive Simulation Models

    ASMは、内燃エンジン、ビークルダイナミクス、エレクトリックコンポーネント、および交通環境のシミュレーション向けツールスイートです。

  • Sensor Simulation
    Sensor Simulation

    高精度の環境センサシミュレーション

ニュースレターを購読します

メールマガジンの購読希望・変更/配信停止手続き