Diesel Engine software verification using GT-POWER RT model and dSPACE

Karthikeyan Venkatesan,
Solution Architect, KPIT Technologies
KPIT’s MBD based development (Domains: Powertrain, Body, Chassis & ADAS)

Automotive Features in production across OEMs & Tier1s developed in MBD
- Years of Experience in MBD: 12+
- Active Engagements in MBD: 40+
- People with expertise in MBD Technology: 1000+
- Automotive Features in production across OEMs & Tier1s developed in MBD: 250+
- OEMs & Tier1s who rely on KPIT for MBD Technology: 50+

Area of Excellence
- Model Based System Engineering
 - Enabling rapid design & Proof of concept of new Powertrain System & Subsystems
- Model Based Software Development
 - Increased flexibility in software development at reduced time & cost
- Integrated Tool Chain
 - For both development & testing of the complete V-cycle

Solutions
- Executable Specifications
 - Robust Requirements for Powertrain | Body | Chassis | ADAS
- Application Migration for AUTOSAR Platform
 - SPLA base Architecture | Unique Migration Methodology
- Production Grade Auto-Code Generation
 - Expertise with Embedded Coder, TargetLink | Guidelines for Optimized performance
- State of the Art MBD Tools
 - Model Guideline Checker with Auto-correction | MIL, SIL, HIL Test Automation Framework
Indicative list of organizations for which KPIT has provided production engineering solutions over time.

Vehicle Manufacturers

- Ford
- Daimler
- Renault Nissan
- Toyota
- Mazda
- Audi
- Paccar
- GM
- Chrysler
- Jaguar
- Tata
- Aston Martin
- Suzuki
- Hyundai
- Reva
- Kia
- Scania
- Renault
- AIXTRON
- NXP
- Infineon
- Renesas
- Siemens
- Bosch
- Delphi
- Continental
- Yazaki
- Denso
- ALPS
- Gentex
- Samsung
- Lear
- EATON
- Autoliv
- Brose

Worldwide Presence

- **USA:** Portland, OR, Detroit, MI, Iselin, NJ, Santa Clara, CA, Sacramento, CA, Irvine, CA, Columbus, IN, Richmond, VA, Houston, TX, Austin, TX, Boca Raton, FL
- **Europe:** London, Paris, Munich, Frankfurt, Amsterdam, Stockholm
- **Middle East:** Dubai
- **South Africa:** Johannesburg
- **India:** Pune, Mumbai, Noida, Bangalore, Hyderabad, Chennai
- **South Korea:** Seoul
- **Japan:** Tokyo, Osaka
- **China:** Shanghai, Beijing
- **Singapore**
- **Brazil:** Sao Paulo
- **South Africa:** Johannesburg
- **Australia:** Sydney

Suppliers

- Danfoss
- Siemens
- Mostal
- SL Corporation
- Delphi
- ALPS
- Yazaki
- Continental
- Denso
- Siemens
- ALPS
- Gentex
- Samsung
- Lear
- EATON
- Autoliv
- Brose
- Samsung
- LG
- Panasonic
- Mopho Electronics
- Carlisle
- Magna
We are playing a meaningful role in Industry shaping organizations

AUTOSAR
Open and standardized automotive software architecture
Premium partner
We are the largest contributor to AUTOSAR consortium & makers of Worlds 1st AUTOSAR R4.0.3 solution

JasPar
Standardization in technology area of in-vehicle network, software for companies in Japan
Premium partner

ASAM
Association for Standardisation of Automation and Measuring Systems
Member
Our Diagnostics Solution has been Recommended by one of TOP 3 OEMs in the World

GENIVI
Automotive alliance for in-vehicle Infotainment software
Anup Sable, Sr. VP is a Board Member of GENIVI

BIS
Bureau of Indian Standards (BIS) for Intelligent Transport Systems
Panel Member
Active role in setting standards for adoption of Intelligent Transport in India

Oracle, **SAP**, **IBM**, and **Microsoft**
Partners.
Trend in the Industry w.r.t. fundamental blocks

Infrastructure
- Investments are made in Tools:
 - Adoption of ALM tool to integrate entire VnV cycle
 - Dashboard reporting and analytic tool
 - Tools based FMEA

Test Boundaries
- Test Boundaries are created along with detailed I/O
 - Categorization of requirement and testing needed at each phase like:
 - Functional Testing, System Testing, Tools Interaction Testing

Traceability
- Adoption of ALM tools
 - Creating Test Boundaries

Re Use
- Developing Test Libraries (PLA kind of concepts)
 - Test Allocation
 - Ensure consistency with Test Infrastructure and Test Repeatability

Automation
- Automation is done at multiple levels:
 - Component Level (MIL), System Level (HIL)
 - Requirement Based Validation
 - Test Automation Framework

Virtualization
- ECU/Design Level
 - Sensor /Actuator Models
 - Component Models
 - Complete Plant modeling at system level

Processes
- Processes are getting aligned to meet the demands of standards like
 - Auto Spice, CMMI, ISO 26262
 - Standard demand certain level of maturity at every stage

Training
- Newly introduced tools
 - Impact of standards in the test cycle
 - Integration and Management of Plant models
Product Engineering – VnV Solutions

Leverage our deep expertise across Automotive Subsystems

<table>
<thead>
<tr>
<th>AUTOSAR & In Vehicle Networks</th>
<th>Engineering Design</th>
<th>Instrument Clusters</th>
<th>Powertrain</th>
<th>Vehicle Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• AUTOSAR Strategy</td>
<td>• Powertrain – Exhaust & Filtration</td>
<td>• Cluster Infotainment Hybrids</td>
<td>• Model Based Development</td>
<td>• Diagnostic Design & Specification Solution</td>
</tr>
<tr>
<td>• AUTOSAR Integration</td>
<td>• Powertrain – Engine Transmission</td>
<td>• Reconfigurable Clusters</td>
<td>• Software Re-architecture</td>
<td>• Aftersales Solution</td>
</tr>
<tr>
<td>• MCAL & Boot loader</td>
<td>• Powertrain – Fuel Systems</td>
<td>• Migration Solutions</td>
<td>• Systems & Control Engineering</td>
<td>• Diagnostic Consultancy Services</td>
</tr>
<tr>
<td>• Migration Solutions</td>
<td>• Interior/Exterior - Seating</td>
<td>• Cluster Platform Management</td>
<td>• AUTOSAR & Functional Safety Compliance</td>
<td>• Software Development & Validation Services</td>
</tr>
<tr>
<td>• OEM Specific Customization</td>
<td>• Interior/Exterior – Door Trims, Steering, Cockpit</td>
<td>• Automated Validation Solutions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body Electronics</th>
<th>Functional Safety ISO 26262</th>
<th>Powertrain</th>
<th>Infotainment</th>
<th>Vehicle Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Power Window & Door Control Module</td>
<td>• Safety Process Consulting</td>
<td>• Model Based Development</td>
<td>• On-Board</td>
<td>• Diagnostic Design & Specification Solution</td>
</tr>
<tr>
<td>• Auto HVAC</td>
<td>• Safety Process Tailoring</td>
<td>• Safety Process & Functional Safety</td>
<td>• Connectivity</td>
<td>• Aftersales Solution</td>
</tr>
<tr>
<td>• Power Management Module</td>
<td>• Functional Safety Engineering & Analysis</td>
<td>• AUTOSAR & Functional Safety</td>
<td>• Enterprise Mobility</td>
<td>• Diagnostic Consultancy Services</td>
</tr>
<tr>
<td>• Body Control Module</td>
<td>• Safety Assessment & Qualification</td>
<td>Compliance</td>
<td>• Business IT</td>
<td>• Software Development & Validation Services</td>
</tr>
<tr>
<td>• Smart Mirrors & Wipers</td>
<td>• Customization of medini™ analyze</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chassis, Safety and Driver Assistance				

• Night Vision With Pedestrian Detection				
• Adaptive Cruise Control				
• Driver Status Monitoring				
• Forward Collision Warning				
• Traffic/Road Sign Recognition				

<table>
<thead>
<tr>
<th>Engineering Design</th>
<th>Instrument Clusters</th>
<th>Powertrain</th>
<th>Vehicle Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Powertrain – Exhaust & Filtration</td>
<td>• Cluster Infotainment Hybrids</td>
<td>• Model Based Development</td>
<td>• Diagnostic Design & Specification Solution</td>
</tr>
<tr>
<td>• Powertrain – Engine Transmission</td>
<td>• Reconfigurable Clusters</td>
<td>• Safety Process & Functional Safety</td>
<td>• Aftersales Solution</td>
</tr>
<tr>
<td>• Powertrain – Fuel Systems</td>
<td>• Migration Solutions</td>
<td>• AUTOSAR & Functional Safety</td>
<td>• Diagnostic Consultancy Services</td>
</tr>
<tr>
<td></td>
<td>• Cluster Platform Management</td>
<td>Compliance</td>
<td>• Software Development & Validation Services</td>
</tr>
<tr>
<td></td>
<td>• Automated Validation Solutions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A team of 560+ engineers in various powertrain and vehicle functions Validation and Verification activities

- Powertrain – ~120 Engineers
- Other Domain ~ 260 Engineers
- Vehicle Functions – ~200 engineer
- ~18% at customer sites and rest in KPIT India centers

Activities involved
- Test Strategy development
- Test framework and vehicle simulators development/enhancement
- HIL Plant model development
- Virtualization strategy development
- Test Procedures Testing based on ISO26262 standards
- Test scripts development
- Test execution
- Test documents, traceability, reports – Test management
HIL Bench Setup @ Bangalore

- dSPACE Simulator
- Fibre Optics Communication
- Serial Communication
- Workstation

- CAN INTERFACE
- ECU
- BOB & Load Box

- Physical Data Exchange

HIL Test Setup @ Pune

- Host User Interface
- USB Interface
- CAN CaseXL

- Host PC
 - Vehicle Model – Matlab/Simulink
 - GMLAN Communication and Flash boot loader specific test cases

- dSPACE Mid Size Simulator
 - Real Time Interface between Test Framework and ECU Hardware

- Real Load
 - HCA Interface between ECU and RDU

- Drive Line ECU

- Analog Signals
- High Speed CAN
- Chassis Expansion CAN

- BLDC Motor Interface
- DC Motor Interface
- Ignition Battery, Voltage, DIO

- Hydraulic Clutch Actuator
- Pressure Sensors
- Values

- DC Motor
Customer Requirements and KPIT HiL Setup

Customer wants to use KPIT knowledge, experiences and manpower to perform software calibration of a development stage ECM for a Diesel engine.

Host PC
KPIT Vehicle Model – Matlab/Simulink
(Diesel engine model in GT Power)

KPIT dSPACE Mid Size Simulator
Real Time Interface between Test Framework and ECU Hardware

Actuators and Engine Harness

ECU

Development stage ECM

Calibration Tool

- **Host User Interface**
- **USB Interface**
- **CAN hardware**
- **PCI Express**
- **High Speed CAN**
- **Chassis Expansion CAN**
- **Analog Signals**

KPIT Vehicle Model – Matlab/Simulink
(Diesel engine model in GT Power)
Diesel Engine software verification using GT-POWER RT model and dSPACE

HiL setup to perform the following test activities:
• HIL-Engine driving strategy for black box testing
• Start and stop of engine.
• Engine Idle operation for some minutes.
• Engine Operation based on Operating Sequence which customer provided to KPIT
• Straight line driving test with various grades required for ECM testing used at test setup.
• Electrical failure tests and threshold tests
• Different Test scenarios of engine performance calibrated after initial test run.
• Automatic Test report generation.
Various challenges faced during the calibration process

• Simulated and actual values read by ECU were not in agreement
• Lot of oscillations in the output received by the ECU during wastegate operation
• Initial Boost pressure is very high and sets diagnostic fault
• The injectors don’t fire during idle operation
• Idle rpm is not stable at the expected value
Few examples of activities performed during the calibration process

• Comparison between values generated by GT Power Model and values received by ECU and tuning of calibration variables:
 • Engine Speed, Hydraulic fluid pressure, Boost Pressure, Rail pressure, Throttle

• Modified parameters in calibration tool to change threshold values

• Implemented custom logic outside S function to control the output from the S function

• Implemented control logic to automate the control thresholds and speed limits of the system

• Modified sensor simulation to match ECU calibration thresholds and simulate acceptable results
Steady State results of real-time response Vs Model
Comparison of Transient Results

- Engine Speed [r/min]
- Turbo Speed [r/min]
- Load Torque [Nm]
- Gas Pressure [bar]
Benefits

Customers can benefit by:

• Easy Control logic verification at an early stage in the development process

• Increased ability to test a combination of 600 electrical and threshold faults using a custom drive cycle in a short span of time

• High flexibility to perform calibration of development software with legacy components
Summary & Conclusion

• Increasing complexities in design and features in automotive embedded systems driving newer trends in V&V methodologies

• KPIT’s experience in V&V spans across various domains and subsystems in automotive systems such as Powertrain, Body, Chassis, Infotainment and so on

• Approach towards providing software verification and testing solutions

• Tools and integration frameworks developed to support various calibration and testing activities
THANK YOU!