Developing Autonomous E-Vehicles Faster and More Efficiently

dSPACE, e.GO Mobile, and the Institute of Industrial Mathematics launch research project

Paderborn/Aachen, May 28, 2019. How can autonomous vehicles with electric drives be developed as examples of complex cyber-physical systems faster, more cost-effectively, and with lower resource consumption? And how can the safety of these vehicles on the road be increased? A team of researchers and developers from dSPACE, e.GO Mobile AG, and the Institute of Industrial Mathematics at the University of Paderborn started a research project a few weeks ago to answer this complex question. The project is funded by the German state of North Rhine-Westphalia (NRW) and the EU as part of the IKT.NRW lead market competition. The project, scheduled to run for 36 months, aims to simultaneously develop and test cyber-physical systems (CPS) using the example of an electric autonomous vehicle. It is abbreviated SET CPS according to its German title.

In vehicle development, trends such as automated driving and the development of alternative drives, such as battery-powered vehicles, are causing a sharp increase in the demands placed on the underlying systems. When these types of vehicles are developed, the aim is to optimize a large number of target parameters such as fuel consumption, range, and driving comfort, and to guarantee the safety of the system. Researchers and developers in the SET CPS project are now looking for new approaches to make the development processes for manufacturers and suppliers reliable and economical, and enable them to meet development times.

The project therefore aims to develop intelligent, simulation-based processes that improve and systematize the development and test process of complex vehicles and increase the degree of automation. For this purpose, design and testing are more closely interlinked to achieve a high level of quality even in the early development phases. The researchers also use the latest mathematical methods from multi-objective optimization, which is one of the core competencies of the Institute of Industrial Mathematics. This enables them to simultaneously achieve competing goals, such as energy efficiency, comfort, and costs, while ensuring the safety of the system. The plan is to integrate the new processes into the dSPACE tool chain and evaluate them using an example from e.GO vehicle development.

“As consortium leader of the project, our goal is to take the next step toward a one-stop development environment for autonomous vehicles," explained Dr. Rainer Rasche, Group Manager Test Automation at dSPACE. “The resulting tool chain enables the developer to adjust the parameters of an ECU to different, typical traffic situations and simultaneously test them in the simulated environments. This will enable our customers to accelerate their development."

Dr. Michael Riesener, Vice President Corporate Research at e.GO Mobile AG, said: “The simultaneous development and testing of new systems for our electric vehicles made possible by SET CPS also enables us to achieve fast development times and to design the vehicles with an even stronger focus on requirements. For this reason, we look forward to advancing the research project in cooperation with our partners."

For more information on the funding program, visit: https://www.leitmarktagentur.nrw/leitmarktwettbewerbe/ikt/

  • Download dspace_pressrelease_setcps_e_201905281.zip ZIP, 5760.6 KB
Contact Information

Drive innovation forward. Always on the pulse of technology development.

Subscribe to our expert knowledge. Learn from our successful project examples. Keep up to date on simulation and validation. Subscribe to/manage dSPACE direct and aerospace & defense now.

Enable form call

At this point, an input form from Click Dimensions is integrated. This enables us to process your newsletter subscription. The form is currently hidden due to your privacy settings for our website.

External input form

By activating the input form, you consent to personal data being transmitted to Click Dimensions within the EU, in the USA, Canada or Australia. More on this in our privacy policy.